

Why You Should Start with the Offense: How to Best Teach Cybersecurity's Core Concepts

Michael Kranch

www.mjkranch.com

CISSE – June 10th, 2019

How can we best teach future cybersecurity professionals?

So What?

- Offensive and defensive techniques both teach cybersecurity's core competencies
- Cybersecurity requires resilient lifelong learners, and offensive techniques best develop these attributes
- Combining academia's concept focus (the why) with industry's relevant training (the what) through gamification (the how) provides the best hybrid education experience

Motivation

Cylnsa attacks west point! Relax, It's a cyberwar game >X)

Capture the Flag (CTF)

Red Teaming the CDX

Coaching the CDX

•Do offensive techniques really establish a better mindset?

•Can both offensive and defensive techniques be used to teach the same security skills?

•Do offensive technology better mindset

ORIGINAL

•Can both offen e and be used to teach

sive techniques ecurity skills?

•What are cybersecurity's core skills?

•Which skills do offensive and defensive techniques teach?

•Does the technique actually impact the resulting mindset?

Cybersecurity's Core Concepts

What are cybersecurity's core concepts?

Core Concepts Definition

- •The concepts expected of any cybersecurity professional entering the workforce
- Equivalent to fundamental knowledge or essential skills
- •Three components:
 - Timeless
 - Not tied to current technology
 - Those ideas that provide the greatest barrier to future mastery (specialization)

Is this a Core Concept?

Digital Forensics?

Programming or Scripting?

Vulnerability Assessment?

Networking?

Enjoying Tasty

Command Line Beverages?
Tools?

Reporting?

Malware Analysis?

Cybersecurity Frameworks

•NICE Cybersecurity Workforce Framework

•Cybersecurity Curricula 2017 (CSEC2017)

Cybersecurity Assessment Tools (CATS) Project

NICE Workforce Framework

Does not establish core skills

NICE Workforce Framework

Does not establish core skills

Cybersecurity Curricula 2017

- •Establishes the guidelines for post-secondary degree programs in cybersecurity
 - A JTF of 325 contributors from 35 countries
- •8 Knowledge Areas (KAs)
 - Data, Software, Component, Connection, System, Human, Organization, and Societal
- •Defines essential concepts in each KA

CSEC17 Essential Skills Example

Component Essentials	Connection Essentials	System Essentials
Vulnerabilities of system components	Systems, architecture, models, and standards	Holistic approach
Component lifecycle	Physical component interfaces	Security policy
Secure component design principles	Software component interfaces	Authentication
Supply chain management	Connection attacks	Access control
Security testing	Transmission attacks	Monitoring
Reverse engineering		Recovery
		Testing
		Documentation

CSEC17 Essential Skills Example

Component Essentials	Connection Essentials	System Essentials
Vulnerabilities of system components	Systems, architecture, models, and standards	Holistic approach
Component lifecycle	Physical component interfaces	Security policy
Secure component design principles	Software component interfaces	Authentication
Supply chain management	Connection attacks	Access control
Security testing	Transmission attacks	Monitoring
Reverse engineering		Recovery
		Testing
		Documentation

CATS Project

- •Collaborative project to build a suite of educational assessment tools
- •Topics determined through a Delphi process
- •Two tools:
 - Cybersecurity Concept Inventory (CCI)
 - Concepts learned after first cybersecurity course
 - Cybersecurity Curriculum Assessment (CCA)
 - Concepts understood when entering the workforce

Example CATS (CCI) Topics

Topic	Importance	Difficulty
Identify vulnerabilities and failures	9	8
Identify attacks against CIA triad and authentication	9	8
Devise a defense	9	7
Identify the security goals	9	6
Identify potential targets and attackers	9	5
Devise an attack	8	8
Given a breach, explain how to recover from it	8	8
Explain why a failure happened	8	7
Identify risky behaviors	8	7
Identify vulnerabilities based on usability issues	8	7

Which skills do offensive and defensive techniques teach?

Component Essentials	Connection Essentials	System Essentials
Vulnerabilities of system components	Systems, architecture, models, and standards	Holistic approach
Component lifecycle	Physical component interfaces	Security policy
Secure component design principles	Software component interfaces	Authentication
Supply chain management	Connection attacks	Access control
Security testing	Transmission attacks	Monitoring
Reverse engineering		Recovery
		Testing
		Documentation

Component Essentials	Connection Essentials	System Essentials
Vulnerabilities of system components	Systems, architecture, models, and standards	Holistic approach
Component lifecycle	Physical component interfaces	Security policy
Secure component design principles	Software component interfaces	Authentication
Supply chain management	Connection attacks	Access control
Security testing	Transmission attacks	Monitoring
Reverse engineering		Recovery
	•	Testing
		Documentation

Component Essentials	Connection Essentials	System Essentials
Vulnerabilities of system components	Systems, architecture, models, and standards	Holistic approach
Component lifecycle	Physical component interfaces	Security policy
Secure component design principles	Software component interfaces	Authentication
Supply chain management	Connection attacks	Access control
Security testing	Transmission attacks	Monitoring
Reverse engineering		Recovery
		Testing
		Documentation

Component Essentials	Connection Essentials	System Essentials
Vulnerabilities of system components	Systems, architecture, models, and standards	Holistic approach
Component lifecycle	Physical component interfaces	Security policy
Secure component design principles	Software component interfaces	Authentication
Supply chain management	Connection attacks	Access control
Security testing	Transmission attacks	Monitoring
Reverse engineering		Recovery
		Testing
		Documentation

Methodology

- •Classify a resource as offensive or defensive
 - Self classification (SANS, Offensive Security)
 - Utilize taxonomy presented in "Cybersecurity Teaching through Gamification" by Gonzalez et al.
- Measure of assessment
 - Direct observation of concepts through performing tasks
 - Analysis of syllabus
- •Resources focused on introductory resources
 - CTFs (PicoCTF & OverTheWire)
 - SANS (SEC503/511/560, FOR508)
 - Offensive Security (PWK)

SANS Classification Example

Monitoring & Detection Int	rusion Detection, Monitoring Over Time
------------------------------	--

Scan Packets & Networks

Intrusion Detection SEC503 Intrusion Detection In-Depth | GCIA

Monitoring & SEC511 Continuous Monitoring and Operations Security Operations | GMON

The detection of what is happening in your environment requires an increasingly sophisticated set of skills and capabilities. Identifying security anomalies requires increased depth of understanding to deploy detection and monitoring tools and to interpret their output.

Penetration Testing | Vulnerability Analysis, Ethical Hacking

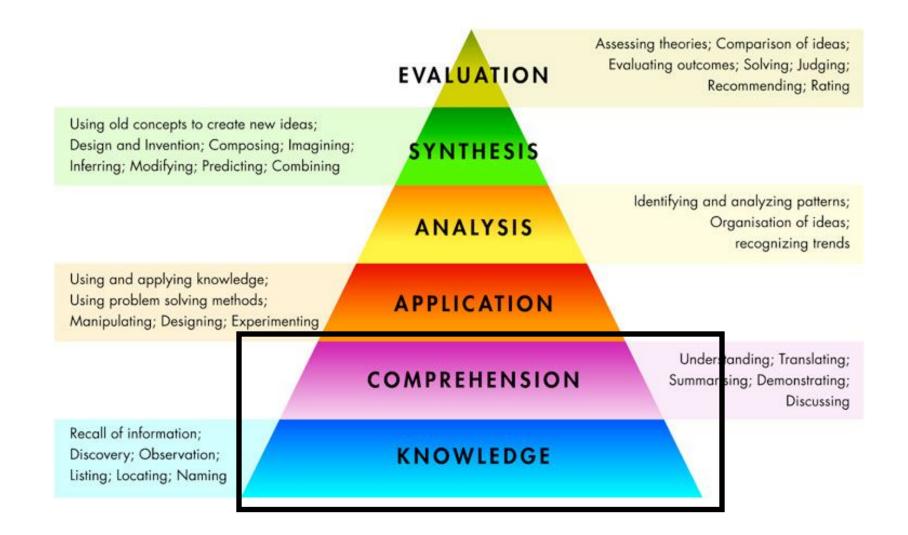
Every Pen Tester Should Know

Networks SEC560 Network Penetration Testing and

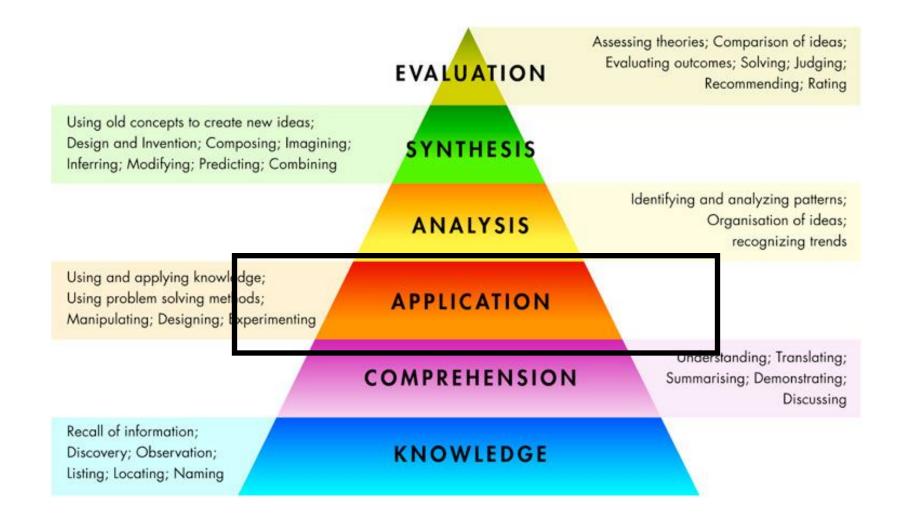
Ethical Hacking | GPEN

Web Apps SEC542 Web App Penetration Testing and

Ethical Hacking | GWAPT


The professional who can find weakness is often a different breed than one focused exclusively on building defenses. A basic tenet of red team/blue team deployments is that finding vulnerabilities requires a different way of thinking, and different tools, but is essential for defense specialists to improve their defenses.

Bloom's Taxonomy



Bloom's Taxonomy

	CCI		CC	CCA		CSEC2017		Total	
	#	%	#	%	#	%	#	%	
Core Concepts	38	_	53	-	44	_	135	_	
Assessed Concepts	38	100%	44	83%	34	77%	116	86%	
Taught by Both	30	79%	36	82%	31	91%	97	84%	
Offensive Only	5	13%	1	2%	0	0%	6	5%	
Defensive Only	3	8%	7	16%	3	9%	13	11%	
Offensive Total	35	92%	37	84%	31	91%	103	89%	
Defensive Total	33	87%	43	98%	34	100%	110	95%	
Primarily Offensive	16	42%	6	14%	10	29%	32	28%	
Primarily Defensive	6	16%	2	5%	5	15%	13	11%	

ELECTA	CAL ENGINEER ING
Co.	900
M	OUTER SCIENCE
1	

	С	CI	I CCA		CSEC	22017	Tot	tal
	#	%	#	%	#	%	#	%
Core Concepts	38	-	53	-	44	-	135	-
Assessed Concepts	38	100%	44	83%	34	77%	116	86%
Taught by Both	30	79%	36	82%	31	91%	97	84%
Offensive Only	5	13%	1	2%	0	0%	6	5%
Defensive Only	3	8%	7	16%	3	9%	13	11%
Offensive Total	35	92%	37	84%	31	91%	103	89%
Defensive Total	33	87%	43	98%	34	100%	110	95%
Primarily Offensive	16	42%	6	14%	10	29%	32	28%
Primarily Defensive	6	16%	2	5%	5	15%	13	11%

	CCI		CC	CCA		CSEC2017		al
	#	%	#	%	#	%	#	%
Core Concepts	38	-	53	_	44	-	135	_
Assessed Concepts	38	100%	44	83%	34	77%	116	86%
Taught by Both	30	79%	36	82%	31	91%	97	84%
Offensive Only	5	13%	1	2%	0	0%	6	5%
Defensive Only	3	8%	7	16%	3	9%	13	11%
Offensive Total	35	92%	37	84%	31	91%	103	89%
Defensive Total	33	87%	43	98%	34	100%	110	95%
Primarily Offensive	16	42%	6	14%	10	29%	32	28%
Primarily Defensive	6	16%	2	5%	5	15%	13	11%

	CCI		CCA		CSEC2017		Total	
	CCI				C3EC2017		Total	
	#	%	#	%	#	%	#	%
Core Concepts	38	_	53	-	44	_	135	-
Assessed Concepts	38	100%	44	83%	34	77%	116	86%
Taught by Both	30	79%	36	82%	31	91%	97	84%
Offensive Only	5	13%	1	2%	0	0%	6	5%
Defensive Only	3	8%	7	16%	3	9%	13	11%
Offensive Total	35	92%	37	84%	31	91%	103	89%
Defensive Total	33	87%	43	98%	34	100%	110	95%
Primarily Offensive	16	42%	6	14%	10	29%	32	28%
Primarily Defensive	6	16%	2	5%	5	15%	13	11%

	CCI		CCA		CSEC2017		Total	
	#	%	#	%	#	%	#	%
Core Concepts	38	-	53	-	44	_	135	_
Assessed Concepts	38	100%	44	83%	34	77%	116	86%
Taught by Both	30	79%	36	82%	31	91%	97	84%
Offensive Only	5	13%	1	2%	0	0%	6	5%
Defensive Only	3	8%	7	16%	3	9%	13	11%
Offensive Total	35	92%	37	84%	31	91%	103	89%
Defensive Total	33	87%	43	98%	34	100%	110	95%
Primarily Offensive	16	42%	6	14%	10	29%	32	28%
Primarily Defensive	6	16%	2	5%	5	15%	13	11%

- •Both offensive (89%) and defensive (95%) cover the majority of the concepts and are relatively comparable
 - Defensive techniques cover 6% more of the concepts than offensive
 - Offensive techniques cover 17% of the concepts in greater details than defensive
- •Either technique can be used to teach the majority of the concepts, and both are needed to teach all

- •Both offensive (89%) and defensive (95%) cover the majority of the concepts and are relatively comparable
 - Defensive techniques cover 6% more of the concepts than offensive
 - Offensive techniques cover 17% of the concepts in greater details than defensive
- •Either technique can be used to teach the majority of the concepts, and both are needed to teach all

Does the technique actually impact the resulting mindset?

Important Psychological Outcomes

Lifelong Learning

- The independent pursuit of learning without formal institutional support or affiliation
- In ACM, IEEE, AITP, and numerous other codes
- Growth mindset (Carol Dweck)

Intrinsic Motivation

- Passion
- Community

Resilience

• Built by facing, failing, then overcoming moderate challenges

Important Psychological Outcomes

- Lifelong Learning
 - The independent pursuit of learning without formal institutional support or affiliation
 - In ACM, IEEE, AITP, and numerous other codes
 - Growth mindset (Carol Dweck)
- •Intrinsic Motivation
 - Passion
 - Community
- Resilience
 - Built by facing, failing, then overcoming moderate challenges

Important Psychological Outcomes

Lifelong Learning

- The independent pursuit of learning without formal institutional support or affiliation
- In ACM, IEEE, AITP, and numerous other codes
- Growth mindset (Carol Dweck)

Intrinsic Motivation

- Passion
- Community

Resilience

• Built by facing, failing, then overcoming moderate challenges

Positive Impact of the Offense

- Security Mindset
 - "Good engineering involves thinking about how things can be made to work; the security mindset involves thinking about how things can be made to fail" - Bruce Schneier
 - Harmless Failures Ed Felten
- Expectation to fail often and repeatedly
- •Repeatedly have "small victories"
- •Interesting and enjoyable

Negative Impact of the Defense

- Assets (checklists) vs. graphs (relationships) mentality
- Limited ability to face and overcome challenges
 - Inherently always lose
 - "Defense-only exercises can be very demotivational, as students feel like they've been bullied by the red team and that they aren't capable"
 - Dr. Carlisle
- Not as impactful for building intrinsic motivation
 - Not as exciting or engaging
 - Not active (involves waiting and can be boring at times)

Psychological Conclusions

- •Developing intrinsic motivation is more difficult with purely defensive techniques
- •Defensive techniques can be de-motivational
- •Offensive techniques are best for building resiliency and intrinsic motivation, required attributes of lifelong learners

Psychological Conclusions

- •Developing intrinsic motivation is more difficult with purely defensive techniques
- Defensive techniques can be de-motivational
- •Offensive techniques are best for building resiliency and intrinsic motivation, required attributes of lifelong learners

So What?

- Offensive and defensive techniques both teach cybersecurity's core competencies
- Cybersecurity requires resilient lifelong learners, and offensive techniques best develop these attributes
- Combining academia's concept focus (the why) with industry's relevant training (the what) through gamification (the how) provides the best hybrid education experience

Questions

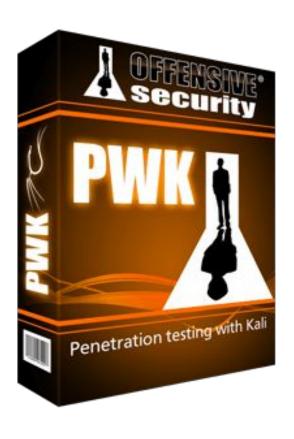
How do I build effective offensive training?

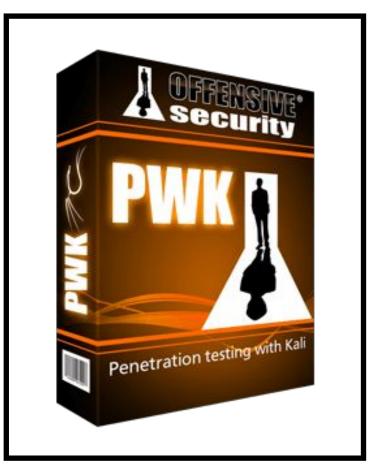
Offensive Curriculum is Hard

- •Large Infrastructure Requirement
 - Maintaining intentionally breakable systems
- Fast Evolution of Material
 - New tools / techniques
 - New exploits (Eternal Blue)
- Breadth of Subject Matter
 - Diverse pre-requisites
 - Troubleshooting is hard
- Legal / Network Issues

Offensive Curriculum is Hard

- •Large Infrastructure Requirement
 - Maintaining intentionally breakable systems
- Fast Evolution of Material
 - New tools / techniques
 - New exploits (Eternal Blue)
- Breadth of Subject Matter
 - Diverse prerequisites
 - Troubleshooting is hard
- •Legal / Network Issues

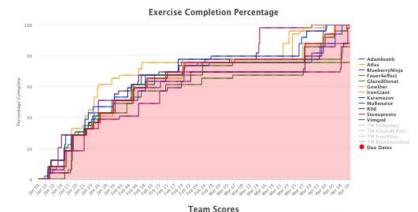

Leverage Industry


Leverage Industry

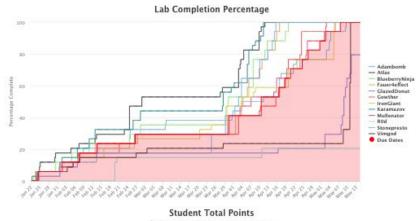
Penetration Testing With Kali

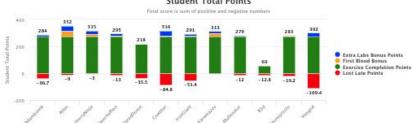
- Course by Offensive Security (Kali Linux)
- Introduces students to ethical hacking tools and techniques
 - Initial Exercises
 - 7 hours of provided videos
 - 350+ page pdf lab guide
 - Local Kali VM / Private Windows 7 Lab Machine
 - Accessed via private VPN
 - Interactive Lab
 - 40 Public Machines
 - ~15 Additional Machines on 3 additional subnets
- Certification (OSCP) a unique 24-hour performance based exam
 - Very low pass rate

CS485: Ethical Hacking Pilot


- Teaching Methodology
 - All requirements issued at start of semester
 - Lessons simply deeper discussion of course material
 - Extensive use of Gamification
 - Progress tracked live via course website
 - Culminating live performance based final exam
- Students
 - 2017 6 Students
 - 4 Seniors, 1 Junior, 1 Sophomore
 - All CS
 - 2018 12 Students
 - 6 Seniors, 5 Juniors, 1 Sophomore
 - 8 CS, 2 IT, 1 EE, 1 Math

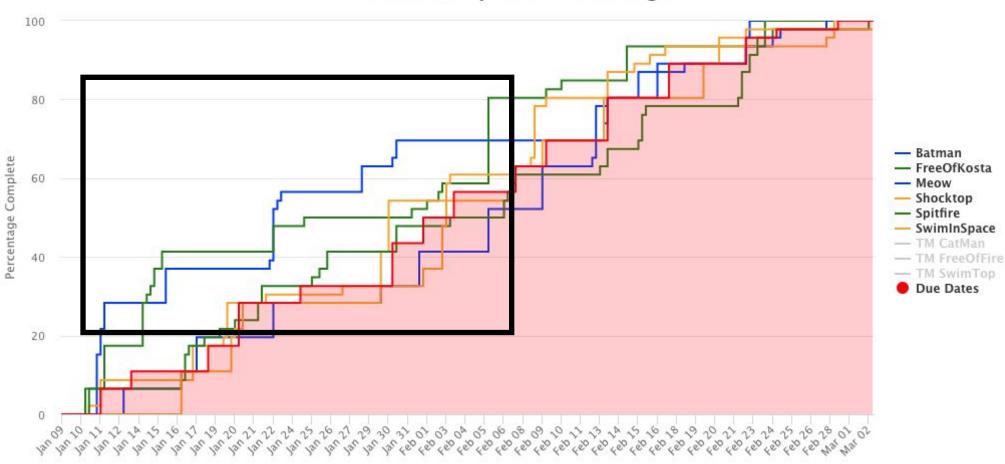


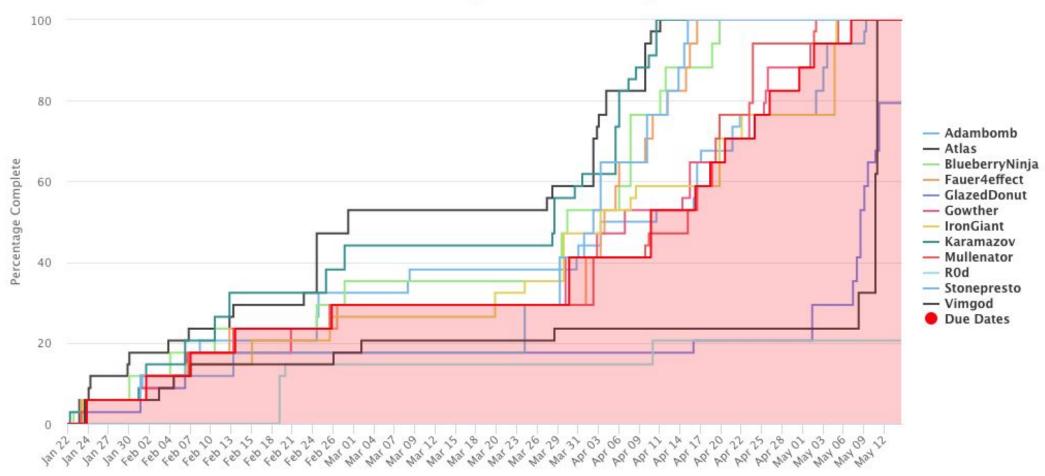


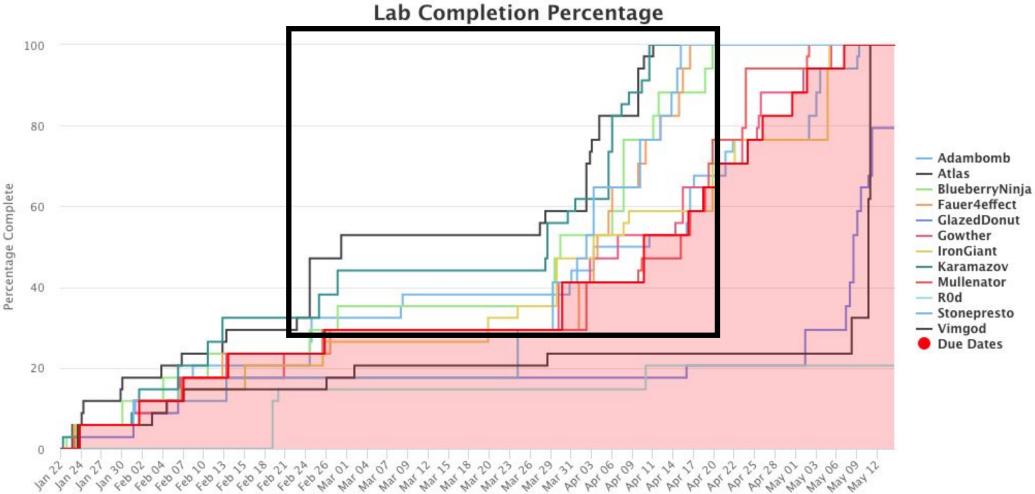


First Bloods!

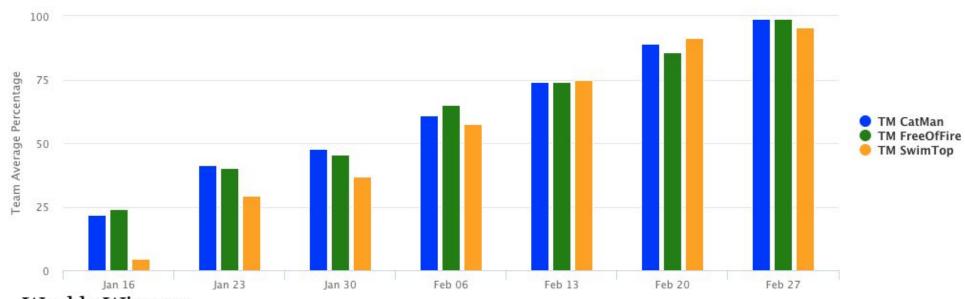

Last Octet	Hostname	Network	First Blood!	First	Time of Last Completion	Students Completed
005	alice	Public	Atlas, Karamazov	02-07 at 09:45		Adambomb, Atlas, BlueberryNinja, Fauer4effect, GlazedDonut, Gowther, IronGiant, Karamazov, Mullenator, Stonepresto, Vimgod


Exercise Completion Percentage


Exercise Completion Percentage

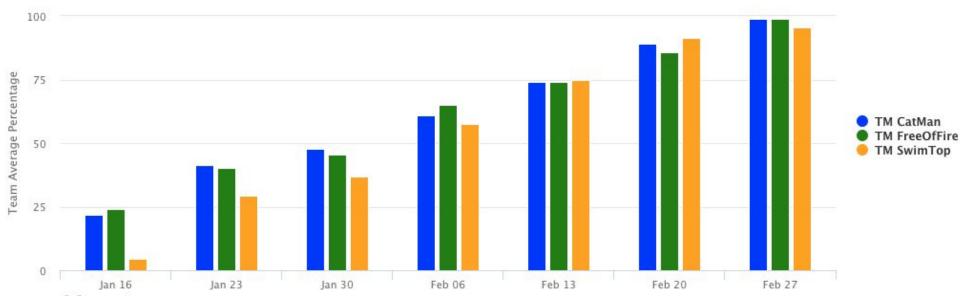


Lab Completion Percentage



Team Scores

Weekly Winners

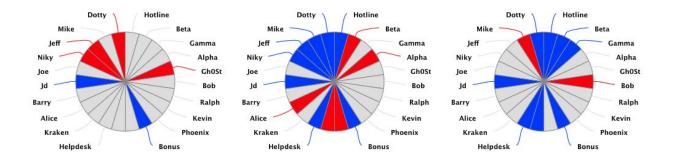

Week #	Date	Winning Team		
1	Monday, January 16 at 00:00	TM FreeOfFire		
2	Monday, January 23 at 00:00	TM CatMan		
3	Monday, January 30 at 00:00	TM CatMan		
4	Monday, February 06 at 00:00	TM FreeOfFire		
5 Monday, February 13 at 00:00		TM SwimTop		
6 Monday, February 20 at 00:00		TM SwimTop		
7 Monday, February 27 at 00:00		TM CatMan, TM FreeOfFire		

Team Scores

Weekly Winners

Week #	Date	Winning Team
1	Monday, January 16 at 00:00	TM FreeOfFire
2	Monday, January 23 at 00:00	TM CatMan
3	Monday, January 30 at 00:00	TM CatMan
4	Monday, February 06 at 00:00	TM FreeOfFire
5	Monday, February 13 at 00:00	TM SwimTop
6	Monday, February 20 at 00:00	TM SwimTop
7	Monday, February 27 at 00:00	TM CatMan, TM FreeOfFire

Live Performance Based Exam



Solves for FreeOfKosta

Solves for Meow

- Gamification provided extra motivation (passion)
 - Individual Competition
 - Team Cooperation
 - Incentive to work ahead of deadlines
 - Perseverance through frustrating troubleshooting
- Class format provided deeper understanding
 - Answer questions / issues from material
 - Focus on "why" and did not have to discuss as much "how"
 - Only possible with smaller class size
- Students internalized the security mindset
 - 8/18 earned OSCP

Can I Do This Myself?

- PWK is best but costly (\$1000 per student)
- Cheaper (~\$250 per student)
 - VirtualHackingLabs.com
 - Comes recommended but I have not personally tested
- Cheapest (~\$40 per student)
 - Textbook
 - Penetration Testing: A Hands-On Introduction to Hacking
 - Rtfm Red Team Field Manual
 - Lab
 - <u>HacktheBox.eu</u> (free for last 5, 1 new machine each week, \$30 a month)
 - <u>Vulnhub.com</u> (free but need to host yourself and writeups exist)

So What?

- Offensive and defensive techniques both teach cybersecurity's core competencies
- Cybersecurity requires resilient lifelong learners, and offensive techniques best develop these attributes
- Combining academia's concept focus (the why) with industry's relevant training (the what) through gamification (the how) provides the best hybrid education experience

Thank you!

Questions?

www.mjkranch.com

So What?

- Developing offensive courses is hard but important
- Industry security certifications provide a useful blueprint
 - Real-world applicability
 - Tested Framework
 - Motivation (Gamification)
- Incorporating the academic mindset (the why) to the industry training (the what) provides the best hybrid experience for your students.

Example CCA Topics

Topic	Importance	Difficulty
Privacy	10	7
Ethics	10	5
Authentication	10	4
Integrity	10	4
Confidentiality	10	3
Secure coding	9	8
Assess vulnerabilities	9	7
Analyze threats	9	7
Manage risks	9	7
Operating system security	9	7

Offensive or Defensive?

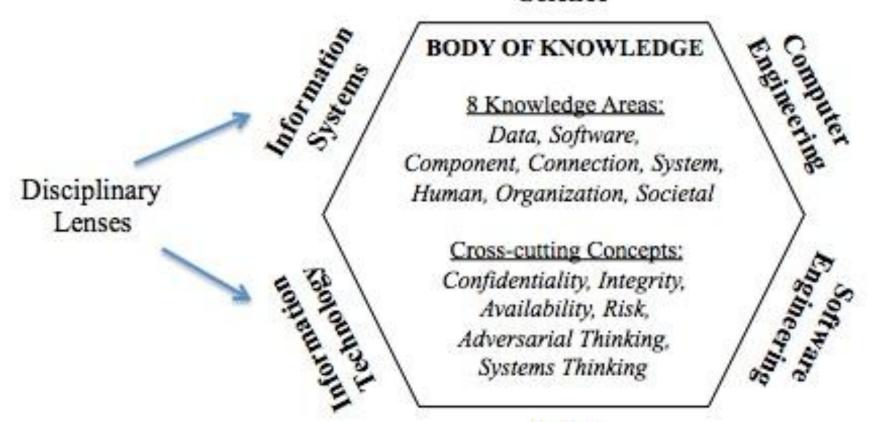
- Network models + protocols
 - http, smb, ftp, ssh, dns.
- Command line proficiency
 - grep, find, chmod, net sh.
- Vulnerability scanning
 - nmap, nessus, google hacking, whois, dig
- Network captures and parsing
 - tcpdump, wireshark, pcaps.

- Programming / Scripting
 - bash, python, PowerShell
- Cryptographic foundations
 - encryption, hashes.
- Binary Analysis / Reversing
 - C, assembly, the stack, insecure functions, gdb, immunity
- Forensics
 - logs, recovering deleted files, important system data

Offensive or Defensive?

- Network models + protocols
- Network captures and parsing
- Command line proficiency
- Vulnerability scanning

- Programming / Scripting
- Cryptographic foundations
- Binary Analysis / Reversing
- Forensics



Cybersecurity Curricula 2017

Computer Science

Other Disciplines

Who Am I?

- I am an academic
- U.S. Army Cyber Officer
- Assistant Professor USMA (West Point)
 - Coach of the Capture the Flag (CTF) Team
 - Coach of the Cyber Defense Team

www.mjkranch.com

Penetration & Vulnerability Tester

Red Team Jobs account for only ~15% of the cybersecurity job openings

