

Upgrading HTTPS in Mid-Air OCITP

INFORMATION TECHNOLOGY POLICY

An Empirical Study of Strict Transport Security and Key Pinning in the Wild

By: Michael Kranch and Joseph Bonneau

What is HSTS and Key Pinning?

- Strict Transport Security (HSTS) is a countermeasure to HTTPS stripping through which the browser learns that specific domains must only be accessed via HTTPS by a HTTP header (dynamic) or a preset (preloaded) list.
- Key Pinning is the only currently deployed defense against a roque certificate where the browser learns to connect to a specific HTTPS domain only if one of a designed set of keys (derived from the domain's certificate) is present.

Measurement Setup

- We utilized the OpenWPM web-measurement utility and modified the provided Selenium backbone's parsed DOM interface to extract all static resources (e.g. a tags, iframes, objects, etc.) from each site on the Chrome preload list.
- To extract dynamic resources (e.g. xmlhttprequest, scripts, etc.), we created a custom Firefox extension that implements the nsiContentPolicy interface in the Firefox extension API that is called prior to loading any resources.
- We used ZMAP to gather the complete header from every active HTTP and HTTPS IP address associated with the Alexa top million domains.
- Lastly, we created a custom crawl and used the X509 library to extract the key pins from every certificate associated with a pinned site.

Deployment of HSTS and Pinning

- HSTS was initially introduced by ForceHTTPS (Jackson and Barth) and standardized by RFC 6797 in 2012.
- HSTS is set through an HTTP header with a mandatory maxage (seconds) and an optional includeSubdomains directive.
- Google started included preloaded HSTS and pinning policies in Chrome in 2012 (see Figure 1 for growth over time).

- Firefox followed suit in 2014 by including a majority subset of Chrome's preload list plus several additional domains.
- Google enabled automated entry (with enforcement of additional parameters) into the preloaded list in August 2014.
- Dynamic Pinning (HPKP) was specified via draft RFC and is just now being seen in the wild.

Major Results of the Study

Error			Prevelance	Vulnerability	
		#	Studied Domain	vullerability	
Preloaded HSTS without dynamic HSTS	34.6%	349/1,008	domains with preloaded HSTS	HTTPS stripping possible on old browsers	
Erroneous dynamic HSTS configuration	59.5%	7,494/12,593	top 1M domains attempting to set HSTS	HTTPS stripping possible on old browsers	
Pinned site with non-pinned active content	3.0%	8/271	base domains with preloaded pins	data theft with a rogue certificate	
	55.6%	5/9	non-Google base domains with preloaded pins	data theit with a rogue certificate	
Pinned site with non-pinned passive content	3.0%	8/271	base domains with preloaded pins	page modifications with a roque certificate	
	44.4%	4/9	non-Google base domains with preloaded pins	page modifications with a rogue certificate	
Cookies scoped to non-pinned subdomains	1.8%	5/271	base domains with preloaded pins	cookie theft with a rogue certificate	
	44.4%	4/9	non-Google base domains with preloaded pins	Cookie trieft with a rogue certificate	
Cookies scoped to non-HSTS subdomains	23.8%	182/765	base domains with preloaded HSTS	cookie theft by active network attacker	
	47.8%	2,460/5,099	base domains with dynamic HSTS	COOKIE THEIT BY ACTIVE HETWORK ATTACKET	

Table 1: Summary of Findings

Mixed Content Issues

Configuration Errors

	Alexa top 1M		Preloaded		
	#	%	#	%	
Attempts to set dynamic HSTS	12,593		751		
Doesn't redirect HTTP->HTTPS	5,554	44.1%	23	3.1%	
Sets HTTP HSTS header only	517	4.1%	3	0.4%	
Redirects to HTTP domain	774	6.1%	9	3.1%	
HSTS Redirects to non-HSTS	74	0.6%	3	0.4%	
Malformed HSTS header	322	2.6%	12	1.6%	
max-age = 0	665	5.3%	0	0.0%	
0 < max-age <= 1 day	2,213	17.6%	5	0.7%	
Sets HSTS without errors	5,099	40.5%	659	87.7%	

Table 2: Dynamic HSTS Errors

- Traditional mixed content refers to a HTTPS page loading resources from a HTTP origin, lowering the overall security to that of the HTTP site. - HSTS and key-pinned sites similarly lower their
- overall security to that of the least secure loaded resource origin.
- Over half the non-Google pinned domains and just under a third of the preloaded HSTS domains include resources from traditional HTTPS sites.

	Content Type	Resource #
Active	script	15,540
	stylesheet	4,725
	link (rel="stylesheet")	2,470
	xmlhttprequest	1,515
	subdocument	170
	font	49
	total	24,477
Passive	image	41,702
	link (rel="shortcut icon")	146
	other passive	213
	total	42,061
Table 3: Types of Pinned Mixed Content Resources		

Cookie Theft

Many sites are vulnerable to cookie theft even when enabling HSTS. Since cookies by default apply to all subdomains, any site not setting HSTS to include subdomains is creating a security hole for cookies.

Condition	Preloaded	Dynamic
Domains with HSTS hole	30.1%	70.7%
Domains with vulnerable cookies	23.8%	23.8%
Cookies not marked secure	95.0%	95.0%

Table 4: Vulnerable Cookies from HSTS Domains

 More significantly, HSTS holes can leak secure cookies including authentication cookies even on pinned sites to an attacker with a rogue certificate.

Domain Hole	Auth Cookie	Insecure #	Total #		
*.crypto.cat	No	3	3		
*.dropbox.com	No	3	8		
*.facebook.com	Yes	17	21		
*.twitter.com	Yes	35	38		
*.www.gmail.com	No	5	5		
total		63	75		
Table 5: Leakable Pinned Cookies					

Conclusion

leaders

were the primary cause of HSTS errors even

amongst the security

Many sites failed to

follow the specifications

outlined in RFC 6797.

- Developers unfamiliarity with these new technologies in the leading cause of errors and many developers do not seem to fully understand same-origin policy.
- We recommend establishing defaults (max-age values and include Subdomains) and simplifying the syntax to assist new adopters.

Future Work

- Continue to monitor the affect of automation on the growth of the preloaded list.
- Evaluate the use of new tokens (e.g. include subdomains for pinning only).
- Track the deployment of new technologies (HPKP).

